Arithmetic of hyperelliptic curves over local fields

T. Dokchitser, V. Dokchitser, C. Maistret, A. Morgan
University of Bristol/King's College London/Warwick Mathematics Institute

March 28, 2017

Setting

- $p \neq 2$
- K / \mathbb{Q}_{p} finite
- C / K hyperelliptic of genus g
- $C: y^{2}=c \cdot f(x)=c \prod_{r \in R}(x-r)$,
$R \subset \bar{K}, \quad c \in K^{\times}$
- $J=\operatorname{Jac}(C)$

Clusters and cluster pictures

Cluster

A cluster of roots \mathfrak{s} is a non-empty subset of R of the form

$$
\mathfrak{s}=\left\{r \in R \mid v\left(r-z_{\mathfrak{s}}\right) \geq d\right\}=R \cap \operatorname{Disc}\left(z_{\mathfrak{s}}, d\right)
$$

with $z_{\mathfrak{s}} \in \overline{\mathbb{Q}_{p}}, d \in \mathbb{Q}$. The depth of \mathfrak{s} is

$$
d_{\mathfrak{s}}=\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)
$$

Example

Local invariants of semistable C and J

Results

- Necessary and sufficient conditions for C (and J) to be semistable;
- Minimal regular model $C_{\text {min }}$ and its special fiber $\overline{C_{m i n}}+$ Frobenius action;
- Tamagawa group and Tamagawa number of J (A. Betts);
- Deficiency.

Example

$$
C: y^{2}=(x-1)\left(x-1+p^{2}\right)\left(x-1-p^{2}\right)(x-2) x\left(x-p^{3}\right)
$$

$$
c_{p}=6 \text { if } 2 \in \mathbb{Q}_{p}^{\times 2}, c_{p}=2 \text { otherwise } .
$$

Local invariants of C and J

Results

- The ℓ-adic Galois representation $H_{e t}^{1}\left(C / \mathbb{Q}_{p}, \mathbb{Q}_{\ell}\right)$;
- Conductor;
- Root number;

Curve and Clusters Frobenius Inertia

Let $p=17, \quad a=\sqrt{-p}$, and C be given by:

$$
\begin{aligned}
& \text { given by: } \\
& y^{2}=\left(x^{5}-p^{2}\right)(x-2)\left(x-1+p^{3}\right)\left(x-1-p^{3}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cccccc}
a & 0 & 0 & -a & & \\
0 & 0 & a & -a & & \\
0 & 0 & 0 & -a & & \\
0 & a & 0 & -a & & \\
& & & & 1 & 0 \\
& & & & 0 & p
\end{array}\right)\left(\begin{array}{llllll}
0 & 0 & 0 & -1 & & \\
1 & 0 & 0 & -1 & & \\
0 & 1 & 0 & -1 & & \\
0 & 0 & 1 & -1 & & \\
& & & & 1 & * \\
& & & & 0 & 1
\end{array}\right)
$$

Type	C	n_{v}	c_{v}	deficient	w_{v}
2	- - - - ${ }_{0}^{+}$	0	1	x	1
1_{n}^{+}	$00000_{\frac{\pi}{2}}^{+}$	1	n	x	-1
1_{n}^{-}	0000 (00) ${ }_{\frac{1}{2}}^{-1}$	1	n^{*}	x	1
$I_{n, m}^{+,+}$		2	$n m$	x	1
$I_{n, m}^{+,-}$		2	$n m^{*}$	x	-1
$I_{n, m}^{-,-}$		2	$n^{*} m^{*}$	x	1
I_{n-n}^{+}	-0 (1) ${ }_{\frac{1}{2}}^{+}$(0) ${ }_{\frac{\pi}{2}}^{+}$	2	n	x	-1
I_{n-n}^{-}		2	n^{*}	x	1
$U_{n, m, r}^{+}$	$\underbrace{\bullet 0})_{\frac{n}{2}} \bullet_{\frac{n}{2}}$	2	$n m+n r+m r$	x	1
$U_{n, m, r}^{-}$		2	$\left(\frac{n m+n r+m r}{g c d(n, m, r)}\right)^{*} \cdot g c d(n, m, r)^{*}$	$\begin{cases}\boldsymbol{l} & n, m, r \text { odd } \\ \boldsymbol{X} & \text { else }\end{cases}$	1

