Arithmetic of hyperelliptic curves over local fields

T. Dokchitser, V. Dokchitser, C. Maistret, A. Morgan

University of Bristol/King's College London/Warwick Mathematics Institute

March 28, 2017

Setting

- *p* ≠ 2
- K/\mathbb{Q}_p finite
- C/K hyperelliptic of genus g

•
$$C: y^2 = c \cdot f(x) = c \prod_{r \in R} (x - r),$$

• J = Jac(C)

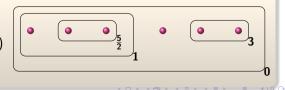
 $R\subset \overline{K}, \quad c\in K^{ imes}$

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ●

Clusters and cluster pictures

Cluster

A *cluster* of roots \mathfrak{s} is a non-empty subset of R of the form


$$\mathfrak{s} = \{r \in R \mid v(r - z_{\mathfrak{s}}) \geq d\} = R \cap \textit{Disc}(z_{\mathfrak{s}}, d),$$

with $z_{\mathfrak{s}} \in \overline{\mathbb{Q}_{p}}, d \in \mathbb{Q}$. The *depth* of \mathfrak{s} is

$$d_{\mathfrak{s}} = \min_{r,r' \in \mathfrak{s}} v(r-r')$$

Example

$$C: y^{2} = (x-p)(x^{2}-p^{5})(x-2)(x-3)(x-3+p^{3})$$

Local invariants of semistable C and J

Results

- Necessary and sufficient conditions for C (and J) to be semistable;
- Minimal regular model C_{min} and its special fiber $\overline{C_{min}}$ + Frobenius action;
- Tamagawa group and Tamagawa number of J (A. Betts);
- Deficiency.

Example

$$C: y^2 = (x-1)(x-1+p^2)(x-1-p^2)(x-2)x(x-p^3)$$

$$c_{
ho}=6$$
 if $2\in \mathbb{Q}_{
ho}^{ imes 2}$, $c_{
ho}=2$ otherwise.

Local invariants of C and J

Results

- The ℓ -adic Galois representation $H^1_{et}(C/\overline{\mathbb{Q}}_p, \mathbb{Q}_\ell)$;
- Conductor;
- Root number;

Curve and Clusters	Frobenius	Inertia
Let $p = 17$, $a = \sqrt{-p}$, and C be given by: $y^2 = (x^5 - p^2)(x - 2)(x - 1 + p^3)(x - 1 - p^3)$ $\boxed{\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 2}_{\frac{5}{5}} \bigcirc \bigcirc \bigcirc 3 \\ \bigcirc \bigcirc \bigcirc \bigcirc 0$	$ \begin{pmatrix} a & 0 & 0 & -a \\ 0 & 0 & a & -a \\ 0 & 0 & 0 & -a \\ 0 & a & 0 & -a \\ & & & 1 & 0 \\ & & & & 0 & p \end{pmatrix} $	$\left(\begin{array}{ccccccc} 0 & 0 & 0 & -1 & & \\ 1 & 0 & 0 & -1 & & \\ 0 & 1 & 0 & -1 & & \\ 0 & 0 & 1 & -1 & & \\ & & & 1 & * \\ & & & 0 & 1 \end{array}\right)$

Type	C	n_v	c_v	deficient	w_v
2		0	1	×	1
1_n^+	$\textcircled{\textcircled{\baselineskip}}_{n} \textcircled{\textcircled{\baselineskip}}_{n} \textcircled{baselineskip}}_{n} \textcircled{baselineskip}_{n} b$	1	n	×	-1
1_n^-	$\textcircled{\textcircled{\baselineskip}}{\hlinebaselineskip}{\hlinebase$	1	n^*	×	1
$I_{n,m}^{+,+}$	$\textcircled{\textcircled{0}} \textcircled{0} \textcircled{0} \textcircled{0} \textcircled{1}_{\underline{n}}^{+} \textcircled{0} \textcircled{0} \textcircled{1}_{\underline{m}}^{+}$	2	nm	×	1
$I_{n,m}^{+,-}$	$\textcircled{\textcircled{0}}\textcircled{0}\textcircled{0}\textcircled{0}\overset{+}{\underline{n}}\textcircled{0}\overset{-}{\underline{n}}\textcircled{1}$	2	nm^*	×	-1
$I_{n,m}^{-,-}$	$\textcircled{\textcircled{\baselineskip}}^{-} \textcircled{\textcircled{\baselineskip}}^{-} \textcircled{baselineskip}}^{-} \textcircled{baselineskip}^{-} \hline baselineskip}^{-} \hline baselineskip}^{-} babselineskip}^{-} baselineskip}^{-} baseline$	2	n^*m^*	×	1
I_{n-n}^+	$\textcircled{\textcircled{0}} \textcircled{\textcircled{0}} \end{array} $	2	n	×	-1
I^{n-n}	$\textcircled{\textcircled{\baselineskip}}^{-} \textcircled{\textcircled{\baselineskip}}^{+} \textcircled{baselineskip}} \end{array}$	2	n^*	×	1
$U^+_{n,m,r}$	$\fbox{\textcircled{0}}_{\underline{n}}\textcircled{0}_{\underline{m}}\textcircled{0}_{\underline{m}}\textcircled{0}_{\underline{5}}$	2	nm + nr + mr	×	1
$U^{n,m,r}$	$\textcircled{\textcircled{0}}_{\underline{n}} \textcircled{0}_{\underline{m}} \textcircled{0}_{\underline{r}} \textcircled{0}_{\underline{r}} \textcircled{0}_{\underline{r}}$	2	$(rac{nm+nr+mr}{gcd(n,m,r)})^* \cdot gcd(n,m,r)^*$	$\begin{cases} \checkmark & n, m, r \text{ odd} \\ \bigstar & \text{else} \end{cases}$	1

996

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣。